资源类型

期刊论文 361

会议视频 3

年份

2024 1

2023 17

2022 28

2021 29

2020 16

2019 25

2018 26

2017 16

2016 17

2015 13

2014 12

2013 15

2012 11

2011 21

2010 21

2009 15

2008 25

2007 25

2006 6

2005 6

展开 ︾

关键词

液压提升机 3

个人热管理 2

仿真 2

卫星 2

微地震监测 2

数值模拟 2

Fluent 1

IHNI-1反应堆;热工水力;子通道;安全分析 1

Inconel 718合金 1

Matlab 1

PV/T 1

Rosenthal方程 1

SAHP 1

ZN-1阻尼橡胶材料 1

三峡 1

三峡升船机 1

三峡工程 1

三峡船闸;输水方式;水流条件;通过能力 1

三维地质建模 1

展开 ︾

检索范围:

排序: 展示方式:

Thermal and hydraulic characteristics of a large-scaled parabolic trough solar field (PTSF) under cloud

Linrui MA, Zhifeng WANG, Ershu XU, Li XU

《能源前沿(英文)》 2020年 第14卷 第2期   页码 283-297 doi: 10.1007/s11708-019-0649-4

摘要: To better understand the characteristics of a large-scaled parabolic trough solar field (PTSF) under cloud passages, a novel method which combines a closed-loop thermal hydraulic model (CLTHM) and cloud vector (CV) is developed. Besides, the CLTHM is established and validated based on a pilot plant. Moreover, some key parameters which are used to characterize a typical PTSF and CV are presented for further simulation. Furthermore, two sets of results simulated by the CLTHM are compared and discussed. One set deals with cloud passages by the CV, while the other by the traditionally distributed weather stations (DWSs). Because of considering the solar irradiance distribution in a more detailed and realistically way, compared with the distributed weather station (DWS) simulation, all essential parameters, such as the total flowrate, flow distribution, outlet temperature, thermal and exergetic efficiency, and exergetic destruction tend to be more precise and smoother in the CV simulation. For example, for the runner outlet temperature, which is the most crucial parameter for a running PTSF, the maximum relative error reaches −15% in the comparison. In addition, the mechanism of thermal and hydraulic unbalance caused by cloud passages are explained based on the simulation.

关键词: parabolic trough solar field (PTSF)     thermal hydraulic model     cloud passages     transients    

Thermal-hydraulic performance of novel louvered fin using flat tube cross-flow heat exchanger

DONG Junqi, CHEN Jiangping, CHEN Zhijiu

《能源前沿(英文)》 2008年 第2卷 第1期   页码 99-106 doi: 10.1007/s11708-008-0010-9

摘要: Experimental studies were conducted to investigate the air-side heat transfer and pressure drop characteristics of a novel louvered fins and flat tube heat exchangers. A series of tests were conducted for 9 heat exchangers with different fin space and fin length, at a constant tube-side water flow rate of 2.8 m/h. The air side thermal performance data were analyzed using the effectiveness-NTU method. Results were presented as plot of Colburn factor and friction factor against the Reynolds number in the range of 500–6500. The characteristics of the heat transfer and pressure drop of different fin space and fin length were analyzed and compared. In addition, the curves of the heat transfer coefficients vs. pumping power per unit heat transfer area were plotted. Finally, the area optimization factor was used to evaluate the thermal hydraulic performance of the louvered fins with differential geometries. The results showed that the and factors increase with the decrease of the fin space and fin length, and the fin space has more obvious effect on the thermal hydraulic characteristics of the novel louvered fins.

关键词: obvious effect     different     thermal hydraulic     constant tube-side     Colburn    

Steady-state thermal-hydraulic analysis of SCWR assembly

LIU Xiaojing, CHENG Xu

《能源前沿(英文)》 2008年 第2卷 第4期   页码 475-478 doi: 10.1007/s11708-008-0093-3

摘要: Among the six gen-IV reactor concepts recommended by the gen-IV international forum (GIF), supercritical water-cooled reactor (SCWR), the only reactor with water as coolant, achieves a high thermal efficiency and, subsequently, has economic advantages over the existing reactors due to its high outlet temperature. A thermal-hydraulic analysis of the SCWR assembly is performed in this paper using the modified COBRA-IV code. Two approaches to reduce the hot channel factor are investigated: decreasing the moderator mass flow and increasing the thermal resistance between moderator channel and its adjacent sub-channels. It is shown that heat transfer deterioration cannot be avoided in SCWR fuel assembly. It is, therefore, highly required to calculate the cladding temperature accurately and to preserve the fuel rod cladding integrity under heat transfer deterioration conditions.

关键词: cladding temperature     assembly     temperature     coolant     resistance    

CFD Simulation of thermal hydraulic characteristics in a typical upper plenum of RPV

Mingjun WANG, Lianfa WANG, Yingjie WANG, Wenxi TIAN, Jian DENG, Guanghui SU, Suizheng QIU

《能源前沿(英文)》 2021年 第15卷 第4期   页码 930-945 doi: 10.1007/s11708-021-0728-1

摘要: A comparative computational fluid dynamics (CFD) study was conducted on the three different types of pressurized water reactor (PWR) upper plenum, named TYPE 1 (support columns (SCs) and control rod guide tubes (CRGTs) with two large windows), TYPE 2 (SCs and CRGTs without windows), and TYPE 3 (two parallel perforated barrel shells and CRGTs). First, three types of upper plenum geometry information were collected, simplified, and adopted into the BORA facility, which is a 1/5 scale system of the four-loop PWR reactor. Then, the geometry, including the upper half core, upper plenum region, and hot legs, was built using the platform. After that, an unsteady calculation to simulate the reactor balance operation at hot full power scenario was performed. Finally, the differences of flowrate distribution at the core outlet and temperature distribution and transverse velocity inside the hot legs with different upper plenum internals were compared. The results suggest that TYPE 1 upper plenum internals cause the largest flowrate difference at the core outlet while TYPE 3 leads to the most even distributed flowrate. The distribution and evolution pattern of the tangential velocity inside hot legs is highly dependent on the upper plenum internals. Two counter-rotating swirls exist inside the TYPE 1 hot leg and only one swirl revolving around the hog leg axis exist inside the TYPE 2 hot leg. For TYPE 3, two swirls like that of TYPE 1 rotating around the hot leg axis significantly increase the temperature homogenization speed. This research provides meaningful guidelines for the future optimization and design of advanced PWR upper plenum internal structures.

关键词: pressurized water reactor (PWR)     upper plenum     internal structures     temperature distribution     computational fluid dynamics (CFD)    

Influence evaluation of loading conditions during pressurized thermal shock transients based on thermal-hydraulics

Jinya KATSUYAMA, Shumpei UNO, Tadashi WATANABE, Yinsheng LI

《机械工程前沿(英文)》 2018年 第13卷 第4期   页码 563-570 doi: 10.1007/s11465-018-0487-9

摘要:

The thermal hydraulic (TH) behavior of coo-lant water is a key factor in the structural integrity assessments on reactor pressure vessels (RPVs) of pressurized water reactors (PWRs) under pressurized thermal shock (PTS) events, because the TH behavior may affect the loading conditions in the assessment. From the viewpoint of TH behavior, configuration of plant equipment and their dimensions, and operator action time considerably influence various parameters, such as the temperature and flow rate of coolant water and inner pressure. In this study, to investigate the influence of the operator action time on TH behavior during a PTS event, we developed an analysis model for a typical Japanese PWR plant, including the RPV and the main components of both primary and secondary systems, and performed TH analyses by using a system analysis code called RELAP5. We applied two different operator action times based on the Japanese and the United States (US) rules: Operators may act after 10 min (Japanese rules) and 30 min (the US rules) after the occurrence of PTS events. Based on the results of TH analysis with different operator action times, we also performed structural analyses for evaluating thermal-stress distributions in the RPV during PTS events as loading conditions in the structural integrity assessment. From the analysis results, it was clarified that differences in operator action times significantly affect TH behavior and loading conditions, as the Japanese rule may lead to lower stresses than that under the US rule because an earlier operator action caused lower pressure in the RPV.

关键词: structural integrity     reactor pressure vessel     pressurized thermal shock     thermal hydraulic analysis     pressurized water reactor     weld residual stress    

Development of a steady thermal-hydraulic analysis code for the China Advanced Research Reactor

TIAN Wenxi, QIU Suizheng, GUO Yun, SU Guanghui, JIA Dounan, LIU Tiancai, ZHANG Jianwei

《能源前沿(英文)》 2007年 第1卷 第2期   页码 189-194 doi: 10.1007/s00000-007-0024-8

摘要: A multi-channel model steady-state thermal-hydraulic analysis code was developed for the China Advanced Research Reactor (CARR). By simulating the whole reactor core, the detailed mass flow distribution in the core was obtained. The result shows that structure size plays the most important role in mass flow distribution, and the influence of core power could be neglected under single-phase flow. The temperature field of the fuel element under unsymmetrical cooling condition was also obtained, which is necessary for further study such as stress analysis, etc. of the fuel element. At the same time, considering the hot channel effect including engineering factor and nuclear factor, calculation of the mean and hot channel was carried out and it is proved that all thermal-hydraulic parameters satisfy the Safety design regulation of CARR .

关键词: detailed     calculation     unsymmetrical     temperature     channel    

医院中子照射器I型堆堆芯热工水力分析

陈立新,赵柱民,江新标,朱磊,周永茂

《中国工程科学》 2012年 第14卷 第8期   页码 51-55

摘要:

针对医院中子照射器I型堆(IHNI-1)的堆芯特点和运行工况,建立了适用于IHNI-1反应堆堆芯的热工分析模型,并对模型进行了验证。利用所建模型,计算了IHNI-1反应堆堆芯热工参数。最后分析了IHNI-1反应堆堆芯入口流量对堆芯出口温度的影响,同时给出了堆芯发生过冷沸腾时的功率计算结果。

关键词: IHNI-1反应堆;热工水力;子通道;安全分析    

Multiobjective trajectory optimization of intelligent electro-hydraulic shovel

《机械工程前沿(英文)》 2022年 第17卷 第4期 doi: 10.1007/s11465-022-0706-2

摘要: Multiobjective trajectory planning is still face challenges due to certain practical requirements and multiple contradicting objectives optimized simultaneously. In this paper, a multiobjective trajectory optimization approach that sets energy consumption, execution time, and excavation volume as the objective functions is presented for the electro-hydraulic shovel (EHS). The proposed cubic polynomial S-curve is employed to plan the crowd and hoist speed of EHS. Then, a novel hybrid constrained multiobjective evolutionary algorithm based on decomposition is proposed to deal with this constrained multiobjective optimization problem. The normalization of objectives is introduced to minimize the unfavorable effect of orders of magnitude. A novel hybrid constraint handling approach based on -constraint and the adaptive penalty function method is utilized to discover infeasible solution information and improve population diversity. Finally, the entropy weight technique for order preference by similarity to an ideal solution method is used to select the most satisfied solution from the Pareto optimal set. The performance of the proposed strategy is validated and analyzed by a series of simulation and experimental studies. Results show that the proposed approach can provide the high-quality Pareto optimal solutions and outperforms other trajectory optimization schemes investigated in this article.

关键词: trajectory planning     electro-hydraulic shovel     cubic polynomial S-curve     multiobjective optimization     entropy weight technique    

Effects of slip length and hydraulic diameter on hydraulic entrance length of microchannels with superhydrophobic

Wenchi GONG, Jun SHEN, Wei DAI, Zeng DENG, Xueqiang DONG, Maoqiong GONG

《能源前沿(英文)》 2020年 第14卷 第1期   页码 127-138 doi: 10.1007/s11708-020-0661-8

摘要: This paper investigated effects of slip length and hydraulic diameter on the hydraulic entrance length of laminar flow in superhydrophobic microchannels. Numerical investigations were performed for square microchannels with Re ranging between 0.1 and 1000. It is found that superhydrophobic microchannels have a longer hydraulic entrance length than that of conventional ones by nearly 26.62% at a low Re. The dimensionless hydraulic entrance length slightly increases with the increasing slip length at approximately Re<10, and does not vary with the hydraulic diameter. A new correlation to predict the entrance length in square microchannels with different slip lengths was developed, which has a satisfying predictive performance with a mean absolute relative deviation of 5.69%. The results not only ascertain the flow characteristics of superhydrophobic microchannels, but also suggest that super hydrophobic microchannels have more significant advantages for heat transfer enhancement at a low Re.

关键词: laminar flow     hydraulic entrance length     super hydrophobic surface     slip length     hydraulic diameter    

Modelling the thresholds of nitrogen/phosphorus concentration and hydraulic retention time for bloom

《环境科学与工程前沿(英文)》 2022年 第16卷 第10期 doi: 10.1007/s11783-022-1564-1

摘要:

● A new model for bloom control in open land scape water was constructed.

关键词: Reclaimed water landscape     Algal bloom     Nitrogen and phosphorus     Hydraulic retention time     Threshold     Control model    

Hydromechanical model for hydraulic fractures using XFEM

Bo HE

《结构与土木工程前沿(英文)》 2019年 第13卷 第1期   页码 240-249 doi: 10.1007/s11709-018-0490-6

摘要: In this study, a hydromechanical model for fluid flow in fractured porous media is presented. We assume viscous fluids and the coupling equations are derived from the mass and momentum balance equations for saturated porous media. The fluid flow through discrete cracks will be modelled by the extended finite element method and an implicit time integration scheme. We also present a consistent linearization of the underlying non-linear discrete equations. They are solved by the Newton-Raphson iteration procedure in combination with a line search. Furthermore, the model is extended to includes crack propagation. Finally, examples are presented to demonstrate the versatility and efficiency of this two-scale hydromechanical model. The results suggest that the presence of the fracture in a deforming, porous media has great impact on the fluid flow and deformation patterns.

关键词: multi-phase medium     porous     fracture     multi-scale method    

Review of fluid and control technology of hydraulic wind turbines

Maolin CAI, Yixuan WANG, Zongxia JIAO, Yan SHI

《机械工程前沿(英文)》 2017年 第12卷 第3期   页码 312-320 doi: 10.1007/s11465-017-0433-2

摘要:

This study examines the development of the fluid and control technology of hydraulic wind turbines. The current state of hydraulic wind turbines as a new technology is described, and its basic fluid model and typical control method are expounded by comparing various study results. Finally, the advantages of hydraulic wind turbines are enumerated. Hydraulic wind turbines are expected to become the main development direction of wind turbines.

关键词: wind turbine     hydraulic system     fluid model     control technology    

Simulation analysis of pressure regulation of hydraulic thrust system on a shield tunneling machine

Zhibin LIU, Haibo XIE, Huayong YANG

《机械工程前沿(英文)》 2011年 第6卷 第3期   页码 377-382 doi: 10.1007/s11465-011-0226-y

摘要:

Hydraulic thrust system is an important system in a shield tunneling machine. Pressure regulation of thrust cylinders is the most important function for thrust system during tunnel excavation. In this paper, a hydraulic thrust system is explained, and a corresponding simulation model is carried out in order to study the system characteristics. Pressure regulation of a certain group’s cylinders has little influence on regulation of the other groups’ cylinders. The influence will not affect the process much during tunnel excavation. Pump displacement may have a greater effect on pressure regulation and oil supply flow rate should be adaptive to the system’s demand. A exacting situation is simulated to explain how pressure regulation works during tunnel excavation.

关键词: tunnel     hydraulic thrust system     pressure regulation     simulation    

A novel high-temperature and high-pressure hydraulic pump based on mononeuron control

Linhui ZHAO, Xin FANG

《机械工程前沿(英文)》 2009年 第4卷 第2期   页码 219-223 doi: 10.1007/s11465-009-0024-y

摘要: Based on structures and characteristics of traditional hydraulic pumps, this paper proposes a novel high-temperature and high-pressure hydraulic pump (HHHP) that can work under 150°C and 28 MPa to overcome problems of traditional high-temperature plunger pumps. The HHHP is designed with the structure of mechanical division and double cylinder parallel. The control signals of two cylinders are two separate triangle waveforms with 90° phase difference. Because the output waveforms of two cylinders have the same characteristics as the control signals, the HHHP can obtain a stable output after two separate waveforms are superposed. A mononeuron self-adaptive PID control algorithm is also improved by modifying parameters and . Two improved controllers are used to control the two cylinders, respectively, making two displacements of plungers match each other. Therefore, reduced fluctuations and stable pressure output is obtained. Besides simulation, tests on the built prototype test system are carried out to verify the performance of HHHP. Results show that the improved control approach can limit fluctuations to a lower level and the HHHP system attains good outputs under different signal periods and different pressures.

关键词: mononeuron PID control     hydraulic pump     pressure fluctuation    

Distributed monitoring and diagnosis system for hydraulic system of construction machinery

Xiaohu CHEN, Wenfeng WU, Hangong WANG, Yongtao ZHOU,

《机械工程前沿(英文)》 2010年 第5卷 第1期   页码 106-110 doi: 10.1007/s11465-009-0089-7

摘要: This paper mainly presents a distributed monitoring and diagnosis system for the hydraulic system of construction machinery based on the controller area net (CAN) field bus. The hardware of the distributed condition monitoring and fault diagnosis system is designed. Its structure including the sensors, distributed data acquisition units, central signal processing unit, and CAN field bus is introduced. The software is also programmed. The general software design and its realization are studied in detail. The experiments and applications indicate that the distributed condition monitoring and fault diagnosis system can effectively realize its function of real-time online condition monitoring and fault diagnosis for the hydraulic system of construction machinery.

关键词: construction machinery     hydraulic system     distributed condition monitoring     controller area net (CAN) field bus     fault diagnosis    

标题 作者 时间 类型 操作

Thermal and hydraulic characteristics of a large-scaled parabolic trough solar field (PTSF) under cloud

Linrui MA, Zhifeng WANG, Ershu XU, Li XU

期刊论文

Thermal-hydraulic performance of novel louvered fin using flat tube cross-flow heat exchanger

DONG Junqi, CHEN Jiangping, CHEN Zhijiu

期刊论文

Steady-state thermal-hydraulic analysis of SCWR assembly

LIU Xiaojing, CHENG Xu

期刊论文

CFD Simulation of thermal hydraulic characteristics in a typical upper plenum of RPV

Mingjun WANG, Lianfa WANG, Yingjie WANG, Wenxi TIAN, Jian DENG, Guanghui SU, Suizheng QIU

期刊论文

Influence evaluation of loading conditions during pressurized thermal shock transients based on thermal-hydraulics

Jinya KATSUYAMA, Shumpei UNO, Tadashi WATANABE, Yinsheng LI

期刊论文

Development of a steady thermal-hydraulic analysis code for the China Advanced Research Reactor

TIAN Wenxi, QIU Suizheng, GUO Yun, SU Guanghui, JIA Dounan, LIU Tiancai, ZHANG Jianwei

期刊论文

医院中子照射器I型堆堆芯热工水力分析

陈立新,赵柱民,江新标,朱磊,周永茂

期刊论文

Multiobjective trajectory optimization of intelligent electro-hydraulic shovel

期刊论文

Effects of slip length and hydraulic diameter on hydraulic entrance length of microchannels with superhydrophobic

Wenchi GONG, Jun SHEN, Wei DAI, Zeng DENG, Xueqiang DONG, Maoqiong GONG

期刊论文

Modelling the thresholds of nitrogen/phosphorus concentration and hydraulic retention time for bloom

期刊论文

Hydromechanical model for hydraulic fractures using XFEM

Bo HE

期刊论文

Review of fluid and control technology of hydraulic wind turbines

Maolin CAI, Yixuan WANG, Zongxia JIAO, Yan SHI

期刊论文

Simulation analysis of pressure regulation of hydraulic thrust system on a shield tunneling machine

Zhibin LIU, Haibo XIE, Huayong YANG

期刊论文

A novel high-temperature and high-pressure hydraulic pump based on mononeuron control

Linhui ZHAO, Xin FANG

期刊论文

Distributed monitoring and diagnosis system for hydraulic system of construction machinery

Xiaohu CHEN, Wenfeng WU, Hangong WANG, Yongtao ZHOU,

期刊论文